NEO-ENACTIN, A NEW ANTIFUNGAL ANTIBIOTIC POTENTIATING POLYENE ANTIFUNGAL ANTIBIOTICS. I

FERMENTATION, EXTRACTION, PURIFICATION AND PHYSICO-CHEMICAL AND BIOLOGICAL PROPERTIES

HISAO KONDO, HIDEKO SUMOMOGI, TOSHIO OTANI and SHOSHIRO NAKAMURA

Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, Kasumi, Hiroshima, Japan

(Received for publication June 3, 1978)

A new antifungal antibiotic, named neo-enactin, was isolated from the cultured mycelia of Strain H 829–MY 10, identified as a new subspecies of *Streptoverticillium* and named *Streptoverticillium olivoreticuli* subsp. *neoenacticus*. The antibiotic was produced with a tetraene antifungal antibiotic, found mainly in the cultured mycelia of Strain H 829–MY 10 and it was extracted with methanol. The antibiotic is of a basic nature and it can be extracted with ethyl acetate at alkaline pH. Purification of neo-enactin was carried out by partition chromatography on cellulose and elution with ethyl acetate bufferized with phosphate buffer (pH 8.0). Neo-enactin shows strong antifungal activity and potentiates the antifungal activity of polyene antifungal antibiotics.

H 646–SY 3 substance was previously isolated from the cultured broth of *Streptomyces roseoviridis* and observed to be a potentiator for activity of polyene antifungal antibiotics by our screening in our efforts to obtain anticholesterol substances produced by microbes^{2,3)}. Strain H 829–MY 10, designated as *Streptoverticillium olivoreticuli* subsp. *neoenacticus*¹⁾, was also shown to produce a potentiator for polyene antifungal antibiotics. Although physico-chemical and biological properties of this product resembled those of H 646–SY 3 substance, the former could be extracted with ethyl acetate at pH 8.0, but the latter could not be extracted with the same solvent. Also, much higher biological activity and different chromatographic characteristics differentiated the new product from H 646–SY 3 substance. H 646–SY 3 substance was named enactin and the new antibiotic obtained from Strain H 829–MY 10 was named neo-enactin¹⁾.

Fermentation, extraction, purification and physico-chemical and biological properties of neoenactin are described in this paper.

Fermentation

Strain H 829–MY 10 was cultured to prepare a seed inoculum in shaker flasks, each containing 100 ml of an inoculation medium composed of 1.0% maltose, 0.2% yeast extract and 0.2% Polypeptone (pH 7.0) at 27°C for 24 hours on a reciprocal shaker (amplitude 7 cm, 130 strokes per minute). The inoculum (2 ml) was used to inoculate shaker flasks each containing 100 ml of a production medium composed of 1.5% soluble starch, 1.0% glucose, 2.0% soy bean meal, 0.5% Ebios (dried yeast, distributed by Tanabe Pharmaceutical Co., Ltd.), 0.25% NaCl and 0.3% CaCO₃ (pH 7.6 before sterilization). The culture was grown at 27°C for 36 hours on the same shaker.

Chart 1. Extraction of neo-enactin

Cultured broth

Mycelial cake	Broth filtrate (13,300 ml, pH 7.6, total activity 100%)
extracted thrice with M	7.07
	Mycelial cake
First extract (2,200 ml, tota	al activity 218%)
Second extract (1,070 ml, t	otal activity 120%)
Third extract (1,370 ml, tot	tal activity 54.6%)
concentrated in vacuo extracted with AcOEt	
AcOEt layer (770 ml, total activity 334%)	H_2O layer (680 ml, total activity 17.6%)
extracted with H_2O at adjusting with dil. H_2S	
H ₂ O layer (190 ml, total activity 330%)	AcOEt layer (740 ml, total activity 5.1%)
extracted with AcOEt	at pH 8.0
AcOEt layer (150 ml, total activity 330%)	H_2O layer (190 ml, total activity 0%)
washed with H_2O (15 concentrated <i>in vacuo</i>	ml) and
Crude viscous oil of neo-er total activity 330%)	

Chart 2. Purification of neo-enactin

Crude viscous oil of neo-enactin (500 mg, total activity 100%)

dissolved in AcOEt (5 ml) saturated with 1/20 M phosphate buffer (pH 8.0)

Cellulose powder column (56×2.0cm diam.); Cellulose powder was impregnated with 1/20 M phosphate buffer (pH 8.0) and dried in air.

developed with AcOEt saturated with 1/20 M phosphate buffer (pH 8.0) and collected in 18 ml fractions each

Fractions 9~15

washed with H_2O and evaporated to dryness in vacuo

Residue (93.6 mg, total activity 60.3 %)

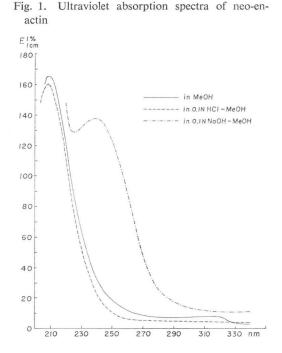
dissolved in AcOEt (2 ml) saturated with 1/20 M phosphate buffer (pH 8.0)

- Cellulose powder column (87×1.5 cm diam.); Cellulose powder was impregnated with 1/20 m phosphate buffer (pH 8.0) and dried in air. developed with AcOEt saturated with 1/20 m phosphate buffer (pH 8.0) and collected in 18-ml fractions each
- Fractions 10~14

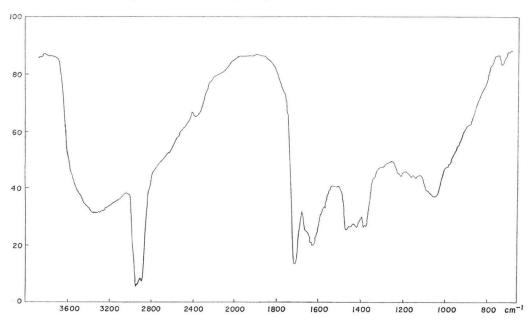
washed with $\rm H_2O$ (15 ml) and concentrated to dryness in vacuo

Purified neo-enactin (43.3 mg, total activity 39.2%)

Extraction and Purification


The antibiotic was recovered mainly from the cultured mycelia by extraction with methanol. The methanol extract was concentrated *in vacuo* to a small volume and the antibiotic was extracted with ethyl acetate from the concentrate at pH 8.0. The antibiotic in the solvent layer was transferred to an aqueous layer at pH 2.0 and again extracted with ethyl acetate at pH 8.0 as summarized in Chart 1. Purification of the antibiotic was carried out by the cellulose powder partition chromatography as shown in Chart 2. The activity of neo-enactin during fermentation, extraction and purification was determined by the cylinder agar plate method using *Candida albicans* Yu 1200 as a test microbe with the seed agar containing trichomycin and cholesterol as previously described^{2,3)}.

Physico-chemical Properties


The purified antibiotic was obtained as a white amorphous powder, melting point $60.5 \sim 64.5^{\circ}$ C. $[\alpha]_{D}^{10} - 14.2^{\circ}$ (*c* 3, MeOH). The elemental microanalysis gave C, 63.47; H, 10.04 and N, 7.44%, but no halogen or sulfur was observed. Neo-enactin shows the ultraviolet absorption maxima at 208 nm ($E_{10m}^{1\%}$ 166) in MeOH, at 208 nm ($E_{10m}^{1\%}$ 161) in 0.1 N HCl-MeOH or at 240 nm ($E_{10m}^{1\%}$ 138) in 0.1 N NaOH-MeOH as shown in Fig. 1. The infrared absorption spectrum of neo-enactin in KBr is shown in Fig. 2. The antibiotic was shown to be homogeneous. It produced a single spot on silica gel G thin-layer plates developed with several kinds of solvent systems and assayed by bioautography, by

ninhydrin reaction or by heating at 100° C for 15 minutes after spraying 40% H₂SO₄. As indicated in Tables 1 and 2, neo-enactin can be differentiated from enactin by paper or silica gel thin-layer chromatograms developed with several kinds of solvent systems.

Neo-enactin is soluble in lower alcohols, ethyl acetate, ether or chloroform, but insoluble in H₂O, *n*-hexane or petroleum ether. Neoenactin gives positive ninhydrin and naphthoresorcinol-phosphate (red) reactions and decolorizes 1% aqueous KMnO₄ solution, but it does not interact with anthrone-phosphate or α naphthol-phosphate. Neo-enactin is somewhat labile in an alkaline solution and 80% of the activity is lost when it is kept at 100°C for 5 minutes at pH 9.0, whereas 80~90% of the activity remains when it is kept at pH 2~6 under the same time and temperature conditions.

Neo-enactin (49.6 mg) was hydrolyzed with 1 N HCl (4 ml) at 110°C for 17 hours. The hydrolyzate was extracted with ethyl acetate, then the aqueous layer was evaporated to dryness, dissolved in H₂O (2 ml) and passed through a column of Amberlite IR 45 (9.5 cm×0.6 cm diam.). The eluate and washing were combined and then concentrated to a small volume *in vacuo*. An amino acid (10.7 mg) was precipitated from the concentrate by the addition of ethanol. The amino acid was identified as

Fig. 2. Infrared absorption spectrum of neo-enactin in KBr

	Rf value			
Solvent system	Neo- enactin	Enactin		
<i>n</i> -BuOH H ₂ O (87:13)	0.80	0.72		
$\begin{array}{c} n\text{-BuOH} - \text{AcOEt} - \text{H}_2\text{O} \\ (9:9:1) \end{array}$	0.76	0.74		
$\begin{array}{c} AcOEt - MeOH - H_2O\\ (10: 2: 1) \end{array}$	0.76	0.64		
$\begin{array}{c} AcOEt - Acetone - H_2O \\ (10: 3: 1) \end{array}$	0.73	0.64		

Table 1. Paper chromatography behaviors of

neo-enactin and enactin

Table 2. Silica gel thin-layer chromatography behaviors of neo-enactin and enactin

	Rf value			
Solvent system	Neo- enactin	Enactin		
$\begin{array}{c} n\text{-BuOH} - \text{MeOH} - \text{H}_2\text{O} \\ (8:4:1) \end{array}$	0.12	0.39		
<i>n</i> -BuOH – H ₂ O (87:13)	0.27	0.27		
n-BuOH – AcOEt – H ₂ O (87: 100: 13)	0.07	0.26		
Acetone – H_2O (4:1)	0.38	0.89		
$\begin{array}{l} n\text{-BuOH} - \text{EtOH} - \text{H}_2\text{O} \\ (8:5:2) \end{array}$	0.20	0.48		
$\begin{array}{c} CHCl_3 - MeOH - H_2O\\ (65: 35: 10, lower phase) \end{array}$	0.31	0.45		

Table 3. Antimicrobial spectra of neo-enactin and trichomycin in the presence and absence of cholesterol

T	Minimum inhibitory concentration (mcg/ml)							
Test organisms	I	II	III	IV	V	VI	VII	
Staphylococcus aureus FDA 209P	>100							
Sarcina lutea PCI 1001	>100							
Micrococcus flavus FDA 16	>100							
Bacillus subtilis PCI 219	>100							
Mycobacierium smegmatis ATCC 607	>100							
Corynebacterium bovis 1810	100							
Escherichia coli NIHJ	>100							
Salmonella typhi T-63	>100							
Shigella sonnei 191–66	>100							
Klebsiella pneumoniae PCI 602	>100							
Candida tropicalis NI 7495	2.5	0.313	1.25	0.156	0.078	0.625	0.313	
Candida pseudotropicalis NI 7494	0.078	0.313	1.25	0.078	0.01	0.156	0.02	
Candida albicans 3147	0.313	0.625	10	0.625	0.156	1.25	0.156	
Candida albicans Yu 1200	0.313	0.625	10	0.313	0.313	1.25	0.313	
Candida krusei NI 7492	2.5	0.313	1.25	0.156	0.156	1.25	0.625	
Saccharomyces cerevisiae	0.078	0.156	0.313	0.039	0.005	0.02	0.01	

Minimum inhibitory concentrations were determined on glucose nutrient agar at 37°C.

I, Neo-enactin. II, Trichomycin. III, Trichomycin+cholesterol (4 mcg/ml). IV, Trichomycin+neo-enactin (0.025 mcg/ml). V, Trichomycin+neo-enactin (0.05 mcg/ml). VI, Trichomycin+neo-enactin (0.05 mcg/ml)+cholesterol (4 mcg/ml). VII, Trichomycin+neo-enactin (0.05 mcg/ml)+cholesterol (4 mcg/ml).

L-serine by paper chromatography and the infrared absorption spectra⁴.

Biological Properties

Neo-enactin shows inhibitory activity against yeasts and fungi, but not against bacteria as seen in Tables 3 and 5. Further, the antibiotic potentiates the antiyeast activity of trichomycin or amphotericin B in the presence or absence of cholesterol at concentrations of 0.025 and 0.05 mcg/ml as seen in Tables 3 and 4. No toxic symptoms were observed when neo-enactin was administrated

VOL. XXXII NO. 1

	Minimum inhibitory concentration (mcg/ml)						
Test organisms	I	II	III	IV	V	VI	
Candida tropicalis NI 7495	0.625	0.625	0.625	0.156	0.625	0.156	
Candida pseudotropicalis NI 7494	0.625	0.625	0.625	0.313	0.625	0.156	
Candida albicans 3147	1.25	1.25	0.625	0.313	0.625	0.156	
Candida albicans Yu 1200	1.25	0.625	0.313	0.313	0.625	0.156	
Candida krusei NI 7492	1.25	2.5	1.25	1.25	2.5	2.5	
Saccharomyces cerevisiae	0.313	0.625	0.625	0.156	0.313	0.156	

Table 4. Antimicrobial spectra of neo-enactin and amphotericin B in the presence and absence of cholesterol

Minimum inhibitory concentrations were determined on glucose nutrient agar at 37°C.

I, Amphotericin B. II, Amphotericin B+cholesterol (4 mcg/ml). III, Amphotericin B+neo-enactin (0.025 mcg/ml). IV, Amphotericin B+neo-enactin (0.05 mcg/ml). V, Amphotericin B+neo-enactin (0.025 mcg/ml)+cholesterol (4 mcg/ml). VI, Amphotericin B+neo-enactin (0.05 mcg/ml)+cholesterol (4 mcg/ml).

to mice at a dosage of 150 mg/kg (intraperitoneal).

Discussion

The ultraviolet and infrared absorption spectra and the biological activities of neoenactin have some similarity to those of enactin²⁾. However, in contrast with neo-enactin, enactin cannot be extracted with ethyl acetate at pH 8.0. Chromatographic characteristics on paper or on silica gel thin-layer plates for neoenactin are different from those of enactin. Also, the biological activity of neo-enactin is about 100 fold stronger than that of enactin.

Table	5.	Antimicrobial	spectra	of	neo-enactin

Test organisms	MIC (mcg/ml)		
Alternaria kikuchiana	6.25		
Glomerella cingulata	12.5		
Colletotrichum gloeosporioides	25		
Colletotrichum lagenarium	12.5		
Gloeosporium laeticolor	>100		
Trichophyton asteroides 429	6.25		
Trichophyton mentagrophytes	12.5		
Aspergillus niger F-16	>100		
Helminthosporium oryzae	0.39		
Pseudomonas phaseolicola	>100		
Xanthomonas oryzae N 5824	6.25		

Minimum inhibitory concentration was determined on potato sucrose agar at 27°C.

Consequently, neo-enactin can be considered to be a new antifungal antibiotic potentiating polyene antifungal antibiotics.

Acknowledgement

This work was supported in part by a Grant-in-Aid for Cancer Research from Ministry of Education, Japan, to which the authors are deeply indebted.

References

- OTANI, T.; K. ISHIMARU, Y. Kawakami, H. Yoshiyama, H KONDO & S. NAKAMURA: Neo-enactin, a new antifungal antibiotic potentiating polyene antifungal antibiotics. II. Taxonomic studies of the producing microorganism and simultaneous production of bleomycin group and streptothricin-like antibiotics. J. Antibiotics (submitted)
- OTANI, T.; S. ARAI, K. SAKANO, Y. KAWAKAMI, K. ISHIMARU, H. KONDO & S. NAKAMURA: H 646–SY 3 substance, a potentiator for polyene antifungal antibiotic. J. Antibiotics 30: 182~185, 1977
- FUKUDA, H.; Y. KAWAKAMI & S. NAKAMURA: A method to screen anticholesterol substances produced by microbes and a new cholesterol oxidase produced by *Streptomyces violascens*. Chem. Pharm. Bull. 21: 2057 ~ 2060, 1973
- TSUBOI, M. & T. TAKENISHI: Infrared absorption spectrum of amino acids. Kagaku-no-Ryoiki 37 (Suppl.): 41~83, 1959 (In Japanese)